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Age–length key (ALK) methods generally perform well when length samples and age samples are representative of the underlying population.
It is unclear how well these methods perform when lengths are representative but age samples are sparse (i.e. age samples are small or missing
in many years, and some length groups do not have any age observations). With western Atlantic bluefin tuna, the available age data are
sparse and have been, for the most part, collected opportunistically. We evaluated two methods capable of accommodating sparse age data:
a novel hybrid ALK (combining forward ALKs and cohort slicing) and the combined forward-inverse ALK. Our goal was to determine if the
methods performed better than cohort slicing, which has traditionally been used to obtain catch-at-age for Atlantic bluefin tuna, given the
data limitations outlined above. Simulation results indicated that the combined forward-inverse ALK performed much better than the other
methods. When applied to western Atlantic bluefin tuna data, the combined forward-inverse ALK approach was able to track cohorts and
identified an inconsistency in the ageing of some samples.
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Introduction
Atlantic bluefin tuna (ABFT) are managed by member nations of

the International Commission for the Conservation of Atlantic

Tunas (ICCAT). Two stocks are currently recognized: the eastern

stock with spawning grounds in the Mediterranean Sea and the

western stock with spawning grounds in and around the Gulf of

Mexico (Carlsson et al., 2006; Rooker et al., 2007). Additional

spawning grounds have recently been discovered in the NW

Atlantic, but the origin and extent of these recruits have not yet

been characterized fully (Richardson et al., 2016; Walter et al.,

2016). Though the two stocks mix throughout most of their for-

aging range (Block et al., 2005; Dickhut et al., 2009; Rooker et al.,

2008; Wilson et al., 2015), they are managed as two separate units

delineated by the 45�W meridian. The eastern stock is estimated

to be �10 times larger than the western stock (Fromentin and

Powers, 2005) and mixing rates have been found to vary across

ages, space, and time (Siskey et al., 2016). ABFT are relatively

long lived (up to 34 years of age; Ailloud et al., 2017) and carry

out extensive migrations across the Atlantic Ocean where they are

targeted by a wide range of fisheries that differentially harvest

multiple age groups.

Age data derived from the reading of hard parts (spines and

otoliths) are needed to accurately characterize the age composi-

tion of catches of each stock. However, the complex, highly mi-

gratory nature of these fish, and the multinational nature of the

fisheries, present challenges for data collectors (Anon, 2014;

Rodriguez-Marin et al., 2015). For ABFT, a small proportion of

fish are sampled for length but the quality of these samples is

poorly known (Justel-Rubio and Ortiz, 2013), but, in the assess-

ment the catch and length-frequency distributions are assumed to
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be well known, which is the assumption we will make in this pa-

per. Data on ages of individual fish, however, are undoubtedly

sparse. We define sparse age data as being characterized by years

with no age data, or very small sample sizes, and years where

some length bins have not been sampled for age. The stock assess-

ment contains over 40 years of length-frequency data, yet only 20

of these years contain age information, and, for many years, only

some sizes were aged. The earliest records of age data date to

1974 in the West Atlantic (Table 1) and 1984 in the East Atlantic.

It was not until 2010 that age data started being collected on a

large scale and annual basis for western ABFT. ICCAT has now

made it a priority to collect age data to improve estimates of the

population age structure; but although efforts are in place to try

to obtain larger and more representative samples of hard parts

(Anon, 2014; Busawon et al., 2014), historical samples have, for

the most part, been obtained from opportunistic sampling pro-

grammes instead of a formal sampling design (see Supplementary

Figure S1 for a depiction of available western ABFT samples by

year, gear and area).

ABFT stocks have traditionally been assessed using a virtual

population analysis (VPA). Unlike integrated assessments, which

are able to convert length frequencies to age frequencies inter-

nally, the VPA requires annual catch-at-age as an input and

projects numbers backwards in time from the oldest to the youn-

gest ages to reconstruct the population size by age. Cohort slicing

has conventionally been used to produce these catch-at-age esti-

mates (see Mohn and Savard, 1989). A growth model is used to

specify size bins corresponding to each age class, and the catch-

at-size data are assigned ages accordingly. The technique, which

proves useful when age data are sparse or unavailable, makes the

strong assumption that there is no overlap in size between adja-

cent age classes. Violations of this assumption tend to (i) under-

estimate recruitment variability (Mohn, 1994; Restrepo, 1995)

and (ii) underestimate the contribution of younger fish while

overestimating the contribution of older fish (Goodyear, 1987;

Kell and Kell, 2011; Ailloud et al., 2015). As these errors propa-

gate through the assessment, they can translate into bias in pa-

rameter estimates derived from cohort-sliced catch-at-age data

(Ailloud et al., 2015), potentially affecting the evaluation of stock

status and future projections.

If data on age and length of individual fish are available, age–

length keys (ALKs) offer a better alternative for estimating catch-

at-age (Ailloud and Hoenig, 2019). ALKs describe the distribu-

tion of age given size (forward ALK—Fridriksson, 1934; Kimura,

1977; Westrheim and Ricker, 1978), size given age (inverse

ALK—Hoenig and Heisey, 1987; Kimura and Chikuni, 1987) or

Table 1. Actual age–length samples available for the West (fish captured in the western Atlantic/Gulf of Mexico).

Age/Year 1974 1975 1976 1977 1978 1996 1997 1998 1999 2000 2002 2009 2010 2011 2012 2013 2014 2015 Grand Total

0
1 26 1 8 35
2 53 1 1 12 6 10 1 15 8 1 16 4 128
3 9 11 3 4 5 6 3 3 50 63 13 38 21 229
4 4 5 6 9 6 2 3 65 90 37 30 90 347
5 3 4 3 1 4 8 1 1 10 67 58 34 35 24 253
6 2 1 5 1 3 3 3 5 4 51 30 16 14 10 148
7 1 1 12 2 2 1 2 7 22 52 49 11 22 6 190
8 1 15 3 1 3 9 54 100 57 47 24 1 315
9 3 1 15 2 3 10 83 184 55 51 29 11 447
10 1 2 1 16 1 8 5 78 111 65 51 54 17 410
11 4 2 1 2 8 8 39 63 44 62 59 37 329
12 2 1 1 2 1 7 9 23 32 32 45 41 51 247
13 1 1 1 4 1 11 8 16 27 17 33 32 39 191
14 1 1 7 5 11 12 20 12 26 19 26 140
15 2 4 2 9 19 23 11 6 16 20 112
16 3 3 2 1 2 16 15 27 24 13 12 7 125
17 8 3 1 2 3 1 11 38 15 27 5 7 121
18 8 3 6 1 4 4 16 20 32 13 7 114
19 9 6 2 1 6 10 10 12 18 11 8 93
20 3 3 1 4 3 9 16 4 14 12 9 78
21 3 1 6 1 1 3 20 9 15 7 4 70
22 2 2 9 1 3 15 11 7 3 6 59
23 4 4 10 1 4 3 11 3 2 42
24 2 7 5 1 2 9 7 33
25 1 2 2 6 3 3 1 18
26 1 8 2 1 3 15
27 2 1 2 4 9
28 7 7
29 1 5 1 1 1 9
30 2 1 3
31
32 2 2
33
34 1 1 1 3
Grand Total 2 156 68 26 98 75 34 43 21 6 55 115 420 1 009 692 585 506 411 4 322
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both (combined forward-inverse ALK; Hoenig et al., 2002). The

age composition of a large sample of measured fish is estimated

by summarizing the relationship between age and length of a

much smaller subsample of fish for which ages have been deter-

mined, and then applying this relationship to the larger sample of

fish for which only lengths are available. These keys are ideally

constructed using length-stratified random sampling to achieve

greater precision. A forward key from one year cannot be applied

to a different year for which age data are missing because forward

keys tend to preserve the age composition of the samples from

which they were derived (Kimura, 1977; Westrheim and Ricker,

1978). As such, forward keys require age data to be collected every

year and to cover the range of lengths observed and, thus, cannot

alone be used to estimate age composition for western ABFT. We

therefore explored two alternative estimation methods that can

accommodate sparse age data: a novel hybrid ALK and the com-

bined forward-inverse age–length (FIAL) key. The hybrid key

(described below) forms a weighted average of cohort slicing and

forward ALKs, whereas the FIAL key combines the forward and

inverse approaches into one likelihood function.

While ALKs should, in theory, offer improvements over co-

hort slicing, it is unclear whether that holds true when age data

are not collected following a statistically robust sampling design.

Some authors have attempted to develop estimation methods

that can accommodate non-random sampling designs (e.g. Hirst

et al., 2012), but our objective was to, instead, test how well dif-

ferent methods perform when fed poor quality data. For western

ABFT, most age samples were obtained opportunistically.

Moreover, of the 20 years of age data available, only 4 of those

years have high sample sizes of aged fish (>500) and good cover-

age across size classes. The rest are characterized by low sample

sizes that do not span the range of sizes observed in the catch

(Table 1).

Our objective was therefore to determine whether the hybrid

key or the combined forward-inverse key can offer improvements

over cohort slicing for estimating age composition in western

ABFT given the existing data limitations. In the first stage, we

simulated catch-at-age and catch-at-length data and annual refer-

ence age–length samples patterned after the biology and sampling

scheme of western ABFT and compared the performance of each

method for estimating catch-at-age. We then tested the selected

method against the dataset available for western ABFT, and com-

pared the resulting estimates of age composition with those

obtained from cohort slicing. Implications for the 2017 stock as-

sessment results are discussed.

Material and methods
The following notation will be used:

i refers to age

j refers to length

k refers to year

m refers to month

When multiple subscripts are used, the appropriate ones are in

the order i; j; k;m.

Catch-at-age estimation
Cohort slicing (CS). CS was performed on a monthly basis using

the algorithm AgeIT developed by ICCAT (Ortiz and Palma,

2011). The algorithm defines length bins for each age group and

month using a growth curve and an assumed birth month. It

then compares the catch-at-size data against the lower and upper

size limits associated with each age class to assign ages to the

catch. For this exercise, the observed monthly catch-at-size data

were given as an input and the growth curve from Ailloud et al.

(2017) with a May birth month as per the 2017 assessment.

The hybrid ALK (HY). This novel, yet simple, approach makes

use of the improved estimates produced by forward ALKs while

using the convenience of cohort slicing to fill gaps where needed.

With HY, if the sample size of otoliths in a given length bin falls

below the accepted threshold (here, T¼ 20), the probability of

age given size for that length bin in year k, P̂ðijjÞHY
k , is estimated

as the weighted sum of the probability of age given size obtained

by analysing the data using forward ALKs, P̂ðijjÞALK
k , and the

probability of age given size obtained from the cohort-sliced

catch-at-age estimates, P̂ðijjÞCS
k : If CS were conducted on an an-

nual basis, P̂ðijjÞCS
k would simply be a matrix of zeros and ones,

but with CS being conducted on a monthly basis the P̂ðijjÞCS
k cells

can, in fact, fall between 0 and 1. The procedure can be expressed

as follows:

P̂ðijjÞHY
k ¼

nj;k

T
P̂ðijjÞALK

k þ T � nj;k

T
P̂ðijjÞCS

k ; for nj;k < 20

P̂ðijjÞALK
k ; otherwise

8<
: (1)

where nj;k is the sample size of otoliths in the jth length bin in the

kth year and T is the threshold of 20 otolith samples per length

bin for using just the estimate from the ALK.

The combined FIAL key. The method of Hoenig et al. (2002)

combines the concepts of forward and inverse keys (see Ailloud

and Hoenig, 2019). While the forward key looks at the distribu-

tion of ages in a size bin to obtain estimates of PðijjÞ, the inverse

key looks at the distribution of sizes given age to obtain estimates

of PðjjiÞ. It is assumed that the PðjjiÞ do not change over time

(i.e. no variation in size-at-age over time) such that an inverse

key developed from data from one (or more) year(s) can be ap-

plied to any year. One thinks of the logic of the inverse method as

finding the weighting factors for the separate length-at-age distri-

butions that cause the sum of the distributions to match the over-

all length-frequency distribution as closely as possible, with the

weighting factors being the age composition. Hoenig et al. (2002)

showed that the PðjjiÞ can be expressed in terms of PðijjÞ and

vice versa using Bayes Rule. Consequently, the forward and in-

verse approaches can be combined into one likelihood function

and the catch-at-age can be estimated for both years with age

data and years without age data as well as for years where only

sparse age data are available.

Let the number of fish sampled in year k whose lengths j and

ages i were both recorded be represented by the array ni;j;k , the

number of fish sampled in year k for which only lengths were

recorded be represented by the matrix yj;k , and the number of fish

sampled in year k for which only ages were recorded be repre-

sented by the matrix xi;k (the xi;k are mainly of theoretical inter-

est—we explain below why this can be useful). And let PðiÞk
represent the probability of age i in year k. The kernel of the log-

likelihood (KÞ is then defined as the product of three compo-

nents, a, b, and c:

K ¼ abc (2)

1692 L. E. Ailloud et al.
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where

a ¼
YI

i¼1

YJ

j¼1

YK
k¼1

h
P jjið ÞPðiÞk

ini;j;k

(2a)

b ¼
YJ

j¼1

YK
k¼1

hXI

i¼1

P jjið ÞPðiÞk
iyj;k

(2b)

c ¼
YI

i¼1

YK
k¼1

PðiÞxi;k

k (2c)

In the above listed equations, a matches the model estimate

of the joint probability of ages and lengths with observations

from the age–length sample available for each year (ni;j;k), b

matches the model estimate of the marginal probability of lengths

with observations from the length-frequency sample available for

each year (yj;k), and c matches the model estimate of the marginal

probability of age (PðiÞ) for each year with counts of fish for

which only ages are available each year (xi;k). Ages (i) range from

0 to 16þ (where “16þ” combines all fish ages 16 and above), j

refers to 15 cm length bins (j 2{(20, 35), [35, 50), . . ., [335,

349)}), and k refers to years (k¼ 1974, 1975,. . ., 2015).

The optimization was carried out in AD Model Builder (ADMB).

To check for proper convergence, the optimization was run with dif-

ferent starting values until three consecutive iterations converged on

the same log-likelihood value. All xi;k were set to 1 fish to keep PðiÞk
estimates off zero. This facilitated finding the global maximum of

the likelihood. To save memory space and avoid boundary prob-

lems, the P jjið Þ matrix was set up as a ragged array in ADMB. Only

the elements of P jjið Þ corresponding to non-zero elements in the

matrix of age data collapsed overall years (
P

kni;j;k) were estimated.

In other words, it was assumed that if a fish of age i and length j had

never been observed in the overall age sample then the probability of

being age i for a fish of length j was zero.

The proportions-at-age estimates resulting from CS, HY, and FIAL

henceforth will be referred to as p̂
CS
; p̂

HY
; and p̂

FIAL
, respectively.

Simulation
We used a simulation analysis to reproduce population dynamics

patterned after western ABFT and test the relative performance of

the three different catch-at-age estimation methods. Recruitment

(age 1), growth and mortality data from 1974 to 2015 were

obtained from the 2017 western ABFT VPA base case scenario

(ICCAT, 2017). These data were used to simulate true catch-at-

age, and then generate observed catch-at-size (subject to measure-

ment error), and age–length samples (subject to random ageing

error and error in the subsampling of the catch; i.e. clustering

and unequal probability of selection among size classes).

Different scenarios regarding recruitment variability, changes in

mean size-at-age over time, magnitude of measurement error,

and balance in the age samples were explored (see Base case and

alternative scenarios section). For each scenario, catch-at-size

data and an age–length sample were generated 100 times (with er-

ror) and performance measures [root mean square error (RMSE)

in the estimated proportions-at-age] were summarized over the

100 runs to evaluate the performance of each estimation method

for each of the 8 scenarios.

Data generation
Annual recruitment values for age 0 fish in year k (N0,k) were

back-calculated using estimated numbers of age 1 fish (N1,k) as-

suming a natural mortality rate (M0) of 0.41 for age 0 fish and a

fishing mortality rate (F0,k) equal to 25% of the fishing mortality

on age 1 fish for that year (F1,k):

N0;k ¼
N1;kþ1

e�ðM0þF0;kÞ
(3a)

where

F0;k ¼ 0:25F1;k (3b)

and where i stands for age and k stands for year. Because the most

recent 3 years of recruitment (2013–2015) are not well estimated

in the VPA, they were replaced by the geometric mean recruit-

ment (age 1) for the period 2006–2012 (96 637 fish). Numbers-

at-age were projected forward to age 30 using a monthly (m) time

step for total mortality (Z), assuming a birth month of May:

Ni;k;mþ1 ¼ Ni;k;me�Zi;k;m (4)

where

Zi;k;m ¼ Mi;k;m þ Fi;k;m (5)

Annual mortality rates were modified to accommodate a

monthly time step (as used in the actual Bluefin tuna assessment):

natural mortality was assumed uniform over the year, while fish-

ing mortality was assumed to follow a symmetric triangular dis-

tribution over the year with a mode at month 6 (i.e. highest F in

the summer and lowest F in the winter).

Catch-at-age (Ci,k,m) for each age, year and month was calcu-

lated as

Ci;k;m ¼
Fi;k;m

Zi;k;m
1� e�Zi;k;mÞNi;k;m

�
(6)

Mean size-at-age and standard deviation in size-at-age were

obtained from the Richards growth equation in Ailloud et al.

(2017) to calculate probabilities of size given age for each year

and month. Size-at-age was assumed to be normally distributed

and no seasonality in growth was incorporated into the growth

equation. The resulting probabilities were used to convert catch-

at-age into catch-at-size, creating what we will refer to as the

“true” catch-at-age-and-size. A normally distributed error term,

eL;x � N 0;r2
L ¼ 25 cm

� �
; was then added to the lengths of indi-

vidual fish (x) to simulate measurement error and produce the

“observed” catch-at-size data (C
0

j;k;m) to be used in our age com-

position estimation models. A variance of 25 cm was chosen be-

cause it was nearly double that reported in Ailloud et al. (2017).

The larger variance was adopted to reflect a situation where many

of the measurements are taken shipboard by fishers or untrained

staff.

The objective when generating age–length samples for the sim-

ulation was to mimic the data availability of western ABFT.

Western ABFT data are characterized by fewer samples in the ear-

lier years and more numerous samples in recent years. Moreover,

because fish caught together (same gear/area) tend to be more

similar in size than fish in the overall population (see

Estimating age composition for multiple years when there are gaps in the ageing data 1693
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Supplementary Figure S1) we generated samples with high intra-

cluster correlation.

The following steps (represented graphically in Figure 1) were

used to generate sparse and non-independent age–length samples:

(1) Annual sample sizes (nk) were set equal to the actual sample

sizes of aged fish available for western ABFT (last row of

Table 1).

(2) For each year in which nk > 0, individual fish from the ob-

served age–length data were split into six non-overlapping

clusters of unequal sizes using a K-means clustering algo-

rithm (Hartigan and Wong, 1979) based on fish length. This

algorithm partitions fish into K groups based on length such

that the sum of squares from points to the assigned cluster

means is minimized. The three clusters with the lowest clus-

ter means were termed the “small fish” (SM) group, and the

three clusters with the highest cluster means were termed the

“large fish” (LG) group.

(3) For each year, we calculated the number of fish aged as a per-

cent of annual catch (termed wk) and, from that metric, cre-

ated the following rule for selecting clusters to be sampled:

(a) If wk <0.0001%: one cluster was randomly sampled from

each of the SM and LG groups.

(b) If 0.0001%� wk <0.001%: two clusters were randomly

sampled from each of the SM and LG groups.

(c) If wk �0.001%: all six clusters were sampled.

While leaving entire portions of the length spectrum

unsampled may seem extreme, it is fairly realistic for the case

of western ABFT. For example, in 1976, 68 fish were aged

(0.0001%� w1976 <0.001%) with no samples falling below

95 cm FL or in the 165–212 cm FL range.

(4) To create high intra-sample correlation, fish present within

each cluster sampled were ordered by size and, after selecting

the first fish randomly, all subsequent fish were sampled

(without replacement) with probabilities proportional to the

inverse difference in lengths between observations and the

first fish sampled. Unequal sizes for each age–length sample

were devised as follows, where nSM
k and nLG

k represent the

sample sizes of fish aged from the small fish group and

the large fish group, respectively, in year k:

nSM
k ¼

X3

z¼1

qc;z nkw (7a)

nLG
k ¼

X3

z¼1

qc;z nkð1� wÞ (7b)

with

nk ¼ nSM
k þ nLG

k (8)

where c is the number of clusters sampled in year k, w is the

proportion of small fish in the sample (for the base case sce-

nario, the sample is balanced between large and small fish,

thus w ¼ 0:5; this number is later changed in alternative sce-

narios 2 and 3, detailed in the next section, when samples

are purposely skewed towards small and large fish to mimic

Figure 1. Illustration of one realization of the simulation sampling scheme. Light grey boxes represent clusters belonging to the small fish
(SM) group, dark grey boxes represent clusters belonging to the large fish (LG) group. Wk is the number of fish aged as a percent of total
catch in year k. The number inside each box represents the sample size of fish to be extracted from each cluster. nk is the total sample size of
aged fish available in year k. w is the proportion of small fish in the sample (for the base case scenario, the sample is balanced between large
and small fish, thus w ¼0.5; this number is later changed in alternative scenarios 2 and 3, when samples are purposely skewed towards small
and large fish, respectively). q(c,z) is a randomly selected (without replacement) fraction used to create uneven samples in each cluster
(q(1,z) 2 {0,0,1} in the case where one cluster from the LG and SM groups are selected, qð2;zÞ 2 0; 1

3 ;
2
3g

�
in the case where two clusters from

the LG and SM groups are selected, and qð3;zÞ 2 1
6 ;

2
6 ;

3
6g

�
in the case where three clusters from the LG and SM groups are selected). The

choice of which clusters get zero samples taken out of them would, of course, change from run to run.
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the sample availability of eastern and western ABFT, respec-

tively) and qc;z is a randomly selected (without replacement)

fraction used to create uneven samples in each cluster

(q1;z 2 0; 0; 1gf in the case where one cluster from the LG

and SM groups are selected, q2;z 2 0; 1
3
; 2

3
g

�
in the case where

two clusters from the LG and SM groups are selected,

and q3;z 2 1
6
; 2

6
; 3

6
g

�
in the case where three clusters from the

LG and SM groups are selected). The qc;z values for the

small-fish clusters are selected independently of the qc;z val-

ues for the large-fish clusters. The z subscript is simply there

to indicate the order in which the fraction was picked: the

first fraction to be selected has for subscript z ¼ 1, the sec-

ond z ¼ 2, and the third z ¼ 3.

(5) A normally distributed error term for each fish x,

eA;x � Nð0;r2
AÞ, was added to the true age of individual fish

(Ax) to simulate ageing error where

rA ¼ A � CV (9)

where the coefficient of variation of ageing error CVð Þ was as-

sumed constant across ages and set to 10% to mimic the thresh-

old error rate used for accepting age readings in bluefin tuna

(Busawon et al., 2015).

Base case and alternative scenarios
Eight scenarios were explored as simulations. For each scenario, a

single true population was simulated, from which 100 different

observed populations (and associated age–length samples) were

generated.

Scenario 1—Base case. All dynamics match those described

in the above section.

Scenario 2—Mainly small fish. Age data sampling is skewed

towards smaller fish. w, the proportion of small fish found

in the sample, defined above, is set to 0.7 instead of the

value of 0.5 used in the base case.

Scenario 3—Mainly large fish. Age data sampling is skewed

towards larger fish. w is set to 0.3 instead of the value of 0.5

used in the base case.

Scenario 4—Large recruitment variability. Recruitment vari-

ability is magnified by calculating the average recruitment

over the 42-year time series of observations (N 0) and in-

flating, by 50%, the size of the recruitment deviate in each

year k:

N
0

0;k ¼ N0;k þ
1

2
N0;k � N 0

� �
(10)

where N
0

0;k is the new recruitment value for year k.

Scenario 5—Small decrease in mean size-at-age over time.

Mean size-at-age (Li;k) is assumed to have been 10% higher

at the beginning of the time series (k ¼ 1974) compared

with modern days (k ¼ 2015), thus the new mean size-at-

age i in year k (L
0

i;kÞ is calculated as:

L
0

i;k ¼ Li;2015 þ
1

10
� 2015� k

2015� 1974
Li;2015 (11)

Scenario 6—Large decrease in mean size-at-age over time.

Mean size-at-age (Li;k) is assumed to have been 20% higher

at the beginning of the time series compared with modern

days. The new mean size-at-age i in year k (L
0

i;kÞ is calcu-

lated following Equation (11) but with a factor of 1/5,

replacing 1/10.

Scenario 7—Large measurement error in recorded lengths. A

higher rate of measurement error in the observed catch-at-

size data. r2
L was increased to 100 cm from the 25 cm used

in the base case scenario.

Scenario 8—Additional age data available. Ten additional

years of age data were simulated to explore how each meth-

od’s performance is expected to change as additional, more

representative data become available in the future.

Recruitment values and associated fishing mortality rate

vectors were randomly sampled (with replacement) from

the most recent 20 year period (1996–2015) to populate the

10 year projection. One thousand age–length records were

generated for each year beyond 2015.

Performance metrics
Performance was measured using the RMSE. For each age and

year combination, the RMSE associated with the proportion-at-

age estimates for any given method and scenario was given by

RMSEi;k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

100

X100

l¼1

ðp̂ i;k;l � pi;kÞ2
vuut (12)

where pi,k is the true proportion at age i in year k and p̂ i;k;l is an

estimate of it from the lth run (l¼ 1, 2,. . ., 100) of a given sce-

nario. The smaller the RMSE the more accurate our estimate of

pi,k.

RMSE values were then collapsed over years

(RMSEage ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k RMSE2
i;k

q
) and ages (RMSEyear ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i RMSE2

i;k

q
Þ,

as well as both years and ages (RMSEtot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k

P
i RMSE2

i;k

q
) to

produce summary performance metrics for each estimation

method and scenario.

To quantify the overall performance of FIAL and HY relative

to CS, we calculated the percent gain in efficiency for each

method, in each scenario. The calculation is analogous to that de-

fined by Cochran (1977) for variances:

%E ¼ 100
MSEtotCS �MSEtotX

MSEtotX
(13)

where MSEtotCS is the mean squared error associated with CS

and MSEtotX is the mean squared error associated with either

one of the alternative estimation methods (X 2 fFIAL; HYgÞ.
To formally test whether one method outperformed the other,

an additional metric was defined:

RMSEtotXl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

k

X
i

ðp̂X
i;k;l � pX

i;kÞ
2

r
(14)

where RMSEtotXl is the component of RMSEtot associated with

the lth run and method X (X 2 fCS;HY; FIALg). For each sce-

nario, a pairwise comparison of RMSEtotCS
l and RMSEtotHY

l , and

a pairwise comparison of RMSEtotCS
l and RMSEtotFIAL

l , were

made to count the number of runs for which RMSEtotHY
l and

Estimating age composition for multiple years when there are gaps in the ageing data 1695

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/76/6/1690/5480393 by guest on 14 D
ecem

ber 2022

Deleted Text: Atlantic bluefin tuna
Deleted Text: 1 
Deleted Text: 2 
Deleted Text: 3 
Deleted Text: -
Deleted Text:  <italic>&ndash;</italic> 
Deleted Text: <italic>:</italic> 
Deleted Text:  <italic>&ndash;</italic> 
Deleted Text: <italic>:</italic> 
Deleted Text:  <italic>&ndash;</italic> 
Deleted Text: <italic>:</italic> 
Deleted Text:  <italic>&ndash;</italic> 
Deleted Text: <italic>:</italic> 
Deleted Text:  <italic>&ndash;</italic> 
Deleted Text: <italic>:</italic> 
Deleted Text:  
Deleted Text: to 
Deleted Text:  <italic>&ndash;</italic> 
Deleted Text: <italic>:</italic> 
Deleted Text: to 
Deleted Text:  <italic>&ndash;</italic> 
Deleted Text: <italic>:</italic> 
Deleted Text:  <italic>&ndash;</italic> 
Deleted Text: <italic>:</italic> 
Deleted Text: -
Deleted Text: -
Deleted Text: root mean square error (
Deleted Text: )
Deleted Text: :
Deleted Text:  
Deleted Text:  
Deleted Text:  


RMSEtotFIAL
l were smaller than RMSEtotCS

l , respectively. We de-

termined significance ðat the a ¼ 0:05 levelÞ using a two-sided

sign test.

Application to real data
A total of 4283 age–length samples (99.9% otoliths, 0.1% spines)

collected in the western Atlantic was used for this analysis, with

the earliest samples dating back to 1974 (Table 1). These samples

comprised a mixture of eastern- and western-origin fish, which

was not an issue for this study because the objective was to char-

acterize the age composition of the catches from the western

Atlantic rather than the age composition of the western stock. All

samples were aged following the standardized reading protocol

and ages were adjusted for proper year class assignment (Luque

et al., 2014; Busawon et al., 2015; Rodriguez-Marin et al., 2016).

In the samples, only 5% of the fish had sizes that were directly

measured as straight fork length; for the remaining fish, measure-

ments were obtained from converted length (i.e. curved fork

length and snout length) or weight measurements. As in the 2017

ICCAT assessment, apparent outliers (39 records of fish with sizes

falling beyond 3 standard deviations of the mean of the sample

for each age) were removed for the analysis as they were thought

to be unrealistic and could have a negative impact on the estima-

tion process.

The official catch-at-size data used in the 2017 assessment was

used as an input for the combined forward-inverse ALK analysis.

ICCAT has devoted a great deal of effort to try to correct for

biases in the catch-at-size data, including some imputation of

missing length data for certain years (Shemla and McAllister,

2006). These records were therefore assumed to be the best infor-

mation available to date for bluefin tuna. Because of the lack of

samples of fish of age 0, Pðjji ¼ 0Þ was fixed to probabilities com-

puted using the mean and standard deviation of size-at-age 0

obtained from Ailloud et al. (2017) growth curve equation and

assuming normality in the distribution of size-at-age. The FIAL

algorithm was run multiple times with different starting values to

check for convergence.

Results
Simulation
One hundred simulation runs was judged sufficient to guarantee

stability of the performance metrics (see Supplementary Figure

S2a–c). Overall, FIAL and HY outperformed CS across all eight

scenarios (Figure 2). FIAL performed best, with the lowest

RMSEtot, followed by HY and CS (Figure 2). Results from the

sign test confirm this: values for RMSEtotFIAL
l and RMSEtotHY

l

were found to be significantly smaller than RMSEtotCS
l in all

eight scenarios (all P values <0.001). Depending on the scenario,

FIAL was 52–451% more efficient than CS, while HY was 11–

21% more efficient than CS (Table 2). The difference in perfor-

mance between FIAL and CS was most pronounced in scenario 8,

where additional years of age data brought considerable improve-

ments to the performance of FIAL, as well as in scenarios 3 and 4,

the scenarios in which the age sample is skewed towards larger

individuals and recruitment variability is inflated by 50%, respec-

tively (Table 2). These three scenarios were where FIAL per-

formed best, both relative to the other methods and relative to

other scenarios. The difference in performance between FIAL and

CS was least pronounced in scenarios 6 and 7 (Table 2). These

were the scenarios where the population experienced large

changes in mean size-at-age through time (scenarios 6) and where

large observation errors were added to the catch-at-length data

(scenario 7).

FIAL either outperformed or performed similarly to CS and

HY across most age groups (Figure 3 and Supplementary Figure

S3a–h). The greatest differences in performance between the

methods were observed in the younger age groups (ages 2–4,

which contribute a large portion of the total catch) and in the

plus group (Figure 3). CS tended to put large amounts of error in

the plus group while the error in FIAL was split between the plus

group and the age before the plus group (age 15; Figure 3). For

FIAL, errors were lower and more evenly distributed among age

groups in scenario 8, where additional years of age data were

simulated.

RMSE values by year for each method and scenario are shown

in Figure 4a and Supplementary Figure S4a–g. RMSEyear values

are, in most years, higher for CS than for HY and FIAL and show

a more erratic pattern with CS. As expected, HY performs better

than CS in years where age data are available. In scenarios 6 and

7, where large changes in mean size-at-age and large errors in the

catch-at-size are simulated, all three methods perform poorly.

The difference in performance between CS and FIAL is most pro-

nounced in the earlier years, where the stock is experiencing very

high levels of fishing mortality on very young ages (Figure 4a and

Supplementary Figure S4a-h). FIAL performs slightly better when

age samples are skewed towards older fish compared with when

age samples are skewed towards smaller fish (Figure 4a and

Supplementary Figure S4a). FIAL performs considerably better

with additional years of age data (scenario 8; Supplementary

Figure S4g).

Application to real data
CS and FIAL were applied to the western ABFT catch-at-size data

from 1974 to 2015. With the FIAL analysis, different starting val-

ues for the parameters were used for each run, and runs with rea-

sonably low final maximum gradient component (<0.1) were

retained. The algorithm showed difficulty converging to a consis-

tent global minimum across trials (Supplementary Figure S5).

Estimates of P̂ðiÞk from the top 5 runs showed nearly identical

results, suggesting the best result is likely close to or at the global

minimum (Supplementary Figure S6). Estimates of P̂ jjið Þ (i.e. the

inverse key) for the best run are shown in Supplementary Figure

S7. Mean sizes at age calculated from the inverse key revealed a

Figure 2. RMSEtot results across methods (CS, HY, and FIAL) and
scenarios (1 through 8).
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slight discrepancy among the mean-size-at-age of older ages:

mean size-at-age 15 was found to be slightly larger than the mean

size-at-age 16þ (Supplementary Figure S7).

There was evidence of both strong and weak cohorts moving

through the catch in the FIAL results (Table 3). Estimates of

catch-at-age derived from the two methods were plotted

against one another and presented in Supplementary Figure S7.

CS and FIAL were often found to be a year off from each other

in characterizing the origin of strong year classes. For example,

in 1975 and 1976, a strong 1973 cohort was clearly apparent in

the CS results while that peak was attributed to a 1972 cohort

in the FIAL results. Similarly, in 2007–2009 CS identified a

strong 2003 cohort while FIAL interpreted it to be a strong

2002 cohort (Supplementary Figure S8; Table 3).

Discussion
With simulated data designed to emulate several real world com-

plexities, the FIAL key performed significantly better than the

other two methods. The method also provided useful results

when applied to the ABFT dataset, albeit with some difficulties in

achieving convergence. The FIAL key was able to track strong

cohorts and this led to the discovery of a systematic ageing error.

The fact that convergence was more difficult with the real data-

set than the simulated datasets provided some indication that the

simulated data may not capture the full degree of idiosyncrasies

contained in the actual data, such as time-varying or seasonal

growth. Looking at length-at-age distributions in the real

dataset revealed evidence of bimodality in certain years, which

could have biological relevance, or could simply be a result of

Table 2. Percent relative efficiency (%E) of HY and FIAL compared
with CS.

Scenario %EHY %EFIAL

1 13 114
2 13 114
3 14 219
4 21 234
5 15 133
6 14 70
7 11 52
8 20 451

Figure 3. RMSEage results across methods (CS, HY, and FIAL) and scenarios (1 through 8).

Figure 4. RMSE values by year and estimation method (lines) resulting from scenario 1 (base case) plotted against otolith sample sizes (n)
available for that year (grey histogram).
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observation errors in the recorded ages or lengths. The observed

bimodalities are likely to exacerbate convergence problems as

they blur the distinction between the size distributions of adjacent

age classes. Similarly, the inconsistency in the mean sizes at age,

where the mean size-at-age 15 was estimated to be slightly higher

than the mean size-at-age 16þ, is likely to cause convergence

problems. This issue could be resolved by sampling additional

large fish, which are greatly needed to adequately characterize

probability of size-at-age over the oldest age groups and which

can lead to greater accuracy overall (as was apparent in the simu-

lation results for scenario 3). Testing alternative bin lengths or

perhaps even exploring the use of unequal bin sizes across lengths

may also allow for increased accuracy and precision in the esti-

mated probabilities of size given age in older fish.

For the application to the real data, parameters associated with

the probabilities at size for age 0 fish had to be fixed because there

were no age 0 fish in the sample. It is important that data be col-

lected on age 0 fish so that these parameters can be estimated.

While age 0 fish are present in the historical catches, this was be-

fore age data was being actively collected. Today, the purse seine

fishery that used to target age 0 fish is no longer operating in the

Atlantic owing to minimum size restrictions, so although annual

age collection is in place it has proven very difficult to obtain

samples of very small fish.

If size-at-age is suspected to have changed through time, our

simulation showed that all three estimation methods would be

negatively affected. Attempts to uncover and characterize signifi-

cant temporal changes in size-at-age in western ABFT have met

with difficulty (Siskey et al., 2016). With the fishery having shifted

from historically targeting very small fish to targeting medium to

large fish in more recent years, it is difficult to conduct a statisti-

cally robust comparison of size-at-age between different time

Table 3. Catch-at-age estimates (in numbers) resulting from the FIAL analysis applied to western Atlantic bluefin tuna data.

Lighter shades indicate lower catches and darker shades indicate higher catches. A strong 2002 cohort is clearly apparent (outlined in black).
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periods. That being said, in the near future, as data collection

improves, the assumption of no variation in size-at-age could be

relaxed by beginning to use forward keys in concert with the FIAL

key. Forward keys do not make any assumptions about variation

in size-at-age; thus, as representative annual samples become

available, forward keys could be used to estimate age composition

in the most recent years, whereas the FIAL key could continue to

be used to estimate age composition in historical years.

The larger concern that came out of this exercise was the confu-

sion over the birth year of the strong cohort seen moving through

the fishery in recent years: the FIAL key analysis pointed to a strong

2002 cohort, yet ageing experts working on eastern ABFT were of

the opinion that the 2003 year class was the strong one. The main

difference between age samples from the eastern and western

Atlantic was the type of structure being aged. Western Atlantic

samples were mainly composed of otoliths (99%) while samples

from the eastern Atlantic were mainly composed of spines (90%).

Thus, this brought us to questioning whether the differing signals

observed in the East and the West were indicative of a true differ-

ence in recruitment history or whether it was simply the product

of a difference in methodology. Paired otolith-spine samples (i.e.

samples taken from the same fish; available from Rodriguez-Marin

et al., 2016) revealed that age readings from otoliths were, on aver-

age, slightly higher than the corresponding age readings from

spines. Age estimates from spine readings are thought to be more

reliable than age readings from otolith samples in young ABFT (Dr

Rodriguez-Marin, personal communication). That is because the

otoliths of young ABFT often contain visible false annuli (i.e. bands

that were not deposited on an annual basis) that can easily be mis-

interpreted as being annual and thus result in overestimated ages.

Beyond age 7, spines are considered less precise than otoliths as the

innermost rings begin to resorb (Rooker et al., 2007). It therefore

appears that the differences observed between East and West stem

from a difference in methodology rather than a difference in re-

cruitment. A more thorough evaluation of this problem is needed

to settle this issue.

While the solution to sparse age data might be to move exclu-

sively to integrated statistical catch at length models—such as

Stock Synthesis (Methot and Wetzel, 2013), CASAL (Bull et al.,

2012), or SCAL (Butterworth and Rademeyer, 2015) and others

(ASAP—Legault and Restrepo, 1998; BAM—Williams and

Shertzer, 2015)—each still has to make some basic assumptions

about size-at-age often similar to the FIAL key, and the idiosyn-

crasies of working with real data, such as lower mean sizes at

older ages and potential time-varying process error observed in

ABFT, can be just as problematic for the more complicated inte-

grated catch at length approaches as they are for the simple ALK

approaches. Moreover, one downside of using integrated analyses

is that it then becomes difficult to tease out inconsistencies

among sources of data and to evaluate failures of assumption and

their effects on the model outputs. In the case of ABFT, by look-

ing at just the age–length data, one could see an inconsistency in

ageing among calcified hard parts; this likely would have been

overlooked in the results from an integrated model. Using the

FIAL key alongside other more sophisticated integrated models

can therefore provide valuable insight into the behaviour of more

complex, integrated models.

Conclusion
The FIAL key outperformed the other ageing methods with the

simulated data and it improved age composition estimates of

western ABFT. Two main concerns should be addressed for the

model to be used operationally: (i) issues with age assignment be-

tween hard part types must be resolved, and (ii) young-of-the-

year fish must be sampled so that the probability of size-at-age 0

can be estimated. In addition, to reduce age composition bias,

scientists and fishers could make a concerted effort to improve

the representativeness of the sampling, and therefore the data

available to assess the stock. Annual data collection efforts must

prioritize maximizing sampling coverage across sizes (particularly

very small and very large fish), space and time, and collection

should strive to follow a robust length stratified sampling design

whenever possible. Any bias and imprecision in the catch-at-size

estimates will also reduce the precision of the catch-at-age esti-

mates, regardless of the estimation method used to obtain age

composition. It is therefore equally important to ensure that the

length sampling is as high quality as possible (i.e. representative

samples with large effective sample size). Lastly, efforts to charac-

terize the stock origin of each age–length sample is also underway

and should be continued as it will allow scientists to disentangle

the origin of strong year class signals, which is crucial to deter-

mining accurately the productivity potential of the stocks.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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